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Abstract

In the paper, a strict method for georcference of high-resolution (1 - 3 m) space
images is suggested, throngh determination of (he coordinates of GCPs of the carth cover
using GPS measurements, As 3 projection plane a reference (earth) el lipsoid is assumed and
the ellipsoid heights of the identifies GCPs of the cover are accoun icd for, Determining the
scalc between the identified points provides for precise rectification of the space images.

1. Introduction

In the last decade, high-resolution space images became quite topical
in the communities dealing with large scale mapping and remote sensing of
the Earth. Research in this specific area gained a tremendous impetus after
the first satellite images of the Earth with resolution from 1.0 to 3.0 m were
received. The process of rapid improvement of space cameras and scanner
systems [1,5], as well as of their carriers - Space Flying Apparata (SFA) was
triggered. Nowadays, cameras of the type KVR-1000 with focal distance
=10 m, flying at height & = 220 km (Fig.1) are used. They provide
resolution of 2.0 m. Camera KFA-3000 (f = 3.0 m; H = 270 km) provides
resolution of 2-3 m. The results provided by the scanner systems
QuickBird, EROS-B, IKONOSI, orbiting at heights of 600 km to 680 km and
teaturing an image resolution of 1 m. are similar. When the scanner systems
are launched 1o higher orbits, lenses are used to insure long focal distances
{=10 m as is the case with JKONOS.

The current state-of-the-art with satcllite images provides real
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opportunities for large scale mapping, upgrading of available maps,
monitoring of the Earth scene and other practical and rcsearch tasks
necessitating great precision in determining the mutual position of
individual discrete points or contours in some particular region,

To accomplish these tasks it is necessary o refer the image
coordinates to some identified ground control points (GCP) of the scene
[2,3.4,5].

The various companics and corporations make efforts to supply the
users with adequate soltware to solve this problem, It is|of great importance
to know the geometrical characteristics of the various types of satcllite
images {scenes). Users have to take them into consideration when choosing
the program packages for processing of these images.

Prof. Gordon Pelric from the Glasgow University pays special
altention to this problem [ 1]. He makes the conclusion that most of the users
are awarc that the greater part of the program packagey for satellite image
processing are unable (o handle geometrical configurations,

This was confirmed by the distributor of the American-Isracli group
IAV/Core of the EROS satellite on a conference organized by the Ministry of
Defence of the Republic of Bulgaria in October, 2001. He stated that, with
immediate determining of the GCP coordinates of the scene by GPS
measurements, precision increases 3 to 4 times, Actually, this corresponds
to the resolution of the satellite image.

As for remote sensing software, a lot of packages can only provide a
very simple geometrical model of the images. Often, satellite images are
treated in a 2D-coordinate system (the case with aerial photography),
making no lieu with their real geometry, possible relief shift or image slope.
In the last case, rectification is made using the method of the “rubber sheet”.
It is based on calculation of polynomials, aiming to make the image
generally coincide with the referent coordinate system of the map, not
removing the scene’s geometrical deformations.

To fulfill its modern functions: small scale topographic mapping,
revision of maps, monitoring of the environment, keeping a precise track of
land scene changes etc., satellite images with high resolution have to
undergo some preliminary processing [2,3,5,6]:

- high-precision coordinate reference of |GCPs by GPS

measuremets;

- Image rectification, accounting for changes in scale coefficients

and relief pattern;

- using the Earth (referent) ellipsoid as a projection plane;

- taking into consideration ellipsoid heights;
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- using strict methods for processing and evaluation of the results.
Under these condition we will have results precise enough to correspond to
the aims of objectives of these modern satellite imalges.

2. New mathematical model for. coordinate connection of the
ground control points from the satellite image

The information which is received and used at satellite images is

versatile with respect to both the determined elements and their location in

time and space. For this reason, the coordinates of the determined values
refer to different orthogonal coordinate systems, as follows:

- The coordinates of GCP XY, Z,, (j512,.,n) from the real

earth scene refer to the Greenwich equatorial geocentric coordinate
system X.Y.Z, having ils origin O in the Earth’s mass center, axis Z
pointing to the central pole, and axis X pointing t0 the cross point of the
Equator and the Greenwich meridian (Fig. I).
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Fig. 2

- The coordinates of the satellite - X,(',Yk',Zk', (k=1, 2,..., m) arc
determined in  the inertial equatorial geocentric coordinate system
XY Z'(Fig. 1).

- The coordinates of the images ;] (x, ¥,2); of the GCPs arc in the
centric- satellite inertial coordinate system x,y,z (Fig, 2).

Quite often, in mathematical processing and evaluation of the
precision of coordinate reference and rectification of the scenes, formulae
are uscd where only the x;and  y, coordinates of the (GCPs Images arc
determined, thereby actually handling the image in a 2D coordinate sysiem,
As stated and substantiated above, thesc equations, ﬁeprived of scale
coefficients, do not provide a clear and accurate idea of the geomctrical
configuration of the image.

According to Fig. 1, we can draw the following coordinate relation
between the centric-satellite voctor-radius Py » geocentric vector-radius A

and topocentric vector-radius fi"kj » teferred to the inertial geocentric systems,
namely:
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X' —X', COS @, C0sd, S
ey Py=(R;=T)=|V',~Y', |= p,lsina, coss, = pyln, |,
Z'\—Z', sin d, y
where:
«fka +7?2kj +é’2kj =1
ayand Sy are the satellite’s rectascensia and declination,
accordingly.
EJ,-:(X',Y',Z')jT- coordinates of GCP - ; in inertial
coordinate system
ro=(x VY20, - coordinates of satellitc in inertial
coordinate systent

Let us assume that vector 5&3 of the image j on the space image

(Fig.2) of ground point jin a centric-satellite inertial coordinate system 18
as follows:

Xy — Xy g}cj
2) l_jﬁj =Yg~ Yio|= Dy i
Ty T Ty é’kj
where;
(3) Dy :\/(xkj_xka)2+()’;5 "}’ko)z‘F(Z;_g_Zko)z

(x,y,z)k}. - coordinates of the image of GCP - j on the satellite
image;
(x, ¥:2), - coordinates of the main point of the scenc O, obtained

from the perpendicular drawn from the hind point of the

lens’s focal plane.
In reality, the main point docs not coincide with the origin of the
coordinate system O on the satellite image (Fig. 2). From (2), we receive the

unit vector D%, whereas equation (3} will be uses as a norm factor:
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Xg X | |Gy

{4) Doﬁ = 5- Vk} = ykn = 7?@'
K
22| on

Formulae (1)-(4) provide the opportunity to define the point from the
satellite image it a centric-satellite inertial coordinate system. But the
coordinatc reference of the images suggests that this be done in the
Greenwich system defined above, in which the centric-satellite vector-radius
is as follows:

208(@ty; — 8, ) 08, Sy Xe— X,
(5) Py = py|sin(a — Si)cosSy | = py Ty|=—1 Y —%; |,
sin & o Z,~Z,
where:
(6) Py =X~ X+ (¥, ¥ +(Z,-Z,) |

- S, is the star time at Greenwich, corresponding 1o the moment t,of
recetving of the satellite image. The coordinates of K/7A-
(X,Y,Z), and of the GCP - (X.Y,Z), are |in the Greenwich
coordinate system.

Using the operator f;, we can obtain the unit vector }3,6,.", which

poinis to GCP- j from the scene in the Greenwich <1;3eocem‘n’c system,
namely:

~ ) é:kj w Xy — X

@ D" =E|ny |= D, Bl Y5 = Yio
i

L ki J L5 T e

From formulate (5) and (7) we obtain the following equation:

ékj Xg — X X; X,
(&) ﬁkj =Py Ty | = 5_9&;& Y " Y |5 YJ - ¥
Sy Y 25 " ko Z,~Z,
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or we can draw the following relation:

G ~ Fr X;— X, X, - X,
©) Y5~ Yu |=—LE'| ¥,~Y, |=mB| ¥,-¥, |,
. 25~ % Ps |, i—Zy Z;-2, |
where:
Dy -
(10) my,, =—= - scale cocfficient
e
a 4,
(1 p=P"=|b b, b,
G 6 &

The operator P, = B is an orthogonal matrix accomplishing the
transition from the Greenwich coordinate system 1o the satellite-centric
coordinate system.

a;, b, and ¢;, i =123 are clements of the matrix F,, which are

function of the Euler angles (Fig.1): Q- length of the ascending knot; w-
argument of the pericenter; i - orbit slope have the following form:

a, = coswcos L) —sin wsin Qcosi, b = —sin woos Q- coswsin Qeosi,

a, = coswsin Q+sin weosQcosi, b, = sin wsin Q +cos wcos{2cos|,

(12) L L.
ay = sin wsin ¢, b, = coswsini,
¢, =sin Qsin , ¢, =cos{dsing, €3 =CO8I
From formulae (9), substituting (10} and (11), we can obtgin-
(13) Yig =~ Ve |=My b by by Y, -7,
Z.‘c} —Z C, Cy Cs Z‘F - ZA"

From equations (13) we obtain a system of lincar equations 1o
determine the coordinates of the GCPs of the Image.
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From equation (13) we obtain the linear equations:
'xk.? — X = mylay (X, — X,) +a, Y, =Yt a(Z, - Z )]
(14) Vg~ Ve = mylb (X ; = X ) +b,(Y, ~ ¥, )+ B (Z, - Z,)]
2~ Ty = m,g[c] (XJ,. =X )+e, (Y; Y +e, (z}, -ZN

Equation (14) can be also presented in the form:

'xk} =myla,AXy; + a,AY,, + @AZ ]+ x,, = m@-f\f-kj * Ky
(15) Y = mx;f[blAij * bsz,q + baAZA;;] T Yeo T m;qﬁ;;j + Vi »

zg = mylaAX; + ¢,AY,; + CAZy ) + 7, = 1, Q + 24,

where, according to (14), we have:

Xy, Yy» 2y - the definable coordinates of the images of the GCPs
on the satellitc image;

Y Yiw» 2, - the coordinates of the main point of the satellitc
image;

X, Y, Z, - geocentric Greenwich coordinates of a GCP from the

carth cover;
Xies Yo Z, - geocentric Greenwich coordinates of the “hind” Iens

point; _
a, b, ¢, i = 1,23 - elements of the orthogonal matrix

;} - function of the Euler angies Q, w, ;.

3. Determination of the correction equations
For every point j from the satellite image, which| turns 1o be image

of GCP-; from the earth scene, we have twelve unknown gquantities
according to equations (14), accordingly (15).

(17) X_;a Y;‘r Z_;s Xk! }/kr Zk$ Q,{m Wka ik: xkoa J?,{-g'! Z,{;o
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whereas their approximately values will be denoted by:
(1 8) on ’on,zjo’ Xko ,Yko’ Zko?Qko, wko ,I.kh‘? xmu , _}) h‘o : ano

Lincarizing cquations (14), accordingly (15), for each support
pointj  from  the scenc of  the space  image  with

coordinates j=(x y z) % ,yiclds correction cquation:

dk’gk
) v, -G, 8 ¢ b5,)% |+L,. B,
” i Pul ik g
dri,,

£ - weight cocfficient
The vatues 4, , B,,C j,ﬁm in correction equation (19) should be

considered as partial derivatives of the coordinates X+ Yg» 2 » Damely

w  Ox )
(20) 3, el
o€, W, 1)y

@1) -
XY Z e

whereas B, = ~C ;» theindex "k" is differentiation along the coordinates
uo=n

of satellite, and the index j' - differentiation along the coordinates of the
GCPs of the scene.

=] a(»"tr ? Z) i
(22) D, = .__ji._’i
a(x'l y!' Z) ko

The correction vectors dfﬁ,,di;;,dﬁj,dﬁko of the unknown values (17)
for the approximate values of (18) have the form:
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Vykj = (vx v, Vz);g-
dS, =(dQ dw i)
(23) sdi=ldx dav d4z)]
R, =(ax av dz)/
diy, =(dx dy dz),"

T

For the vector of the free term -’;; we have:

My "Xy
(24) L}cj = Uk,r' == Urkj =V — }".kj ’
Ly~ Zlkf

where:
U §= (x ¥ z)ij - the defined values of the coordinates Xiir Yij» 2y
along (14), accordingly (15);
z'),g.T - the measured coordinates of the space imagc

4. Obtaining equations to determine the values Ay, By € j

To obtain the partial derivatives, constituting clements of the matrix
(20), 2D and (22), it is necessary to successively differcntiatc the
coordinates Xgr Ygr 2g in relation to the Euler angles (Q, w,i), the space

coordinates of the ground points GCP - j x v Z;)},, the Grecnwich
coordinates of K/I4-(X ¥ Z), and to coordinates x|y 2y -

4.1. Partial derivatives of the value ﬁ,{
According to equation {22), it is necessary to differentiate the image
coordinates from (14), accordingly (12), in relation to (€2, w, i). But since

only values a4, 5, ¢;, (i = 1,2,3) are function of the Euler angles, it is

necessary to differentiate Ny, B, 0, , according 1o the equations:
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[ Oy 3myNy) _, 0y
OQw,i), O Qwi), 7 QWD)

(26) 63’;:} — a(mkjp;:,—) — 5(?’@)
O(Q’ W, I)k 6(Q, w’l)k a(Q’ w’l)k
Oy 0myQy) a(0y)

AQw,i), 9O, Wyi), ~ (2, w,i),

4.2, Partial derivatives of the values B, = ~€'J,—

As stated above, to obtain the derivatives of the reflectance
coordinates from (x,y,z)k} in relation to (X ¥ z),” and x v Z)J.T,
equations (14), accordingly (15), should be used, which means both the

Dy . = = — .
scale #iy; =—’1, following formula ( 103, and Nw,}?kj,ij arc function of the
K
Greenwich coordinates. Having in mind this fact, we will differentiate,
using equations:

s B G(m,q-ﬁkj) __ Omy) O(N,)
(XY, Z) sy - AX, Y, Z),5 R XY, Z)yy | g XY\ Z)y,

o2 OB o) 7+ my )
NX.Y.Z)yyy O(X,Y,Z)y, XY, D)y HX, Y, D)y

azk}' _ a(mkjékj) _ a(mkj) L a(gﬂj)
OX Y. Dy OXY,Z), XX 2, 2 oX.Y.Z),,

The cssential thing here is that the scale coefficient my; 18 calculated

for each available GCP from the cover, with the obtained deformations of
the mmage between each determined reflectance point and the origin of the
coordinate system.

4.3. Equation to determine the derivatives (.x, y,z)k; in relation to

(x’ y’z)ﬁ'o
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Following equation (22) and the system of hinear equations (14),
accordingly (15), and having in mind that, according to equation (10), in
determining my,, the distance Dy of the image is used, formula (3), which is

a function of the coordinates of the main point Koo Vo T, ON picture O.

Based on this, we have the following meanings for the matrix D,,:

(xy — X3, )" .
m’*_’Ti‘__ 0 0
D ko
= _ Vi = Vi)’
(28) D=l 0 4 _Jhl 0
D
0 O‘ (ij __}E?kﬂ)
D7 r

The esscntial thing here is that the scale coefficien rmy; 18 calculated

for cach available GCP from the cover, with the obtained deformations of
the 1image between each determined reflectance point and the origin of the
coordinate system.

Correction equation (19) has the form:

(29) Vo, = AxdS, + Budi, + C,dR, + Dydiig, + L P,

6.Conclusion

As a conclusion we will note that the developed mathematical model
provides the opportunity for georectification of the images of GCPs from
the cover in a 3D satellitc-centric coordinate system (X, y, z)g having its
origin. O in the lens’s hind point, thereby obtaining a 3D model of the
image. Usually, in the program packages used in remote sensing ol the
Earth, the images of the GCPs are rectified in a ground coordinate system
(%, ¥)x. The essential point here is that we obtain the real geometry of the
image and it is possible to determine the shifi of the projected GCP as a
result of the cover pattern and slope.

In the obtained equations, the scale coefficient m:ﬁ’j— is also
Ly
included,which provides the opportunity to determine the geometric
deformation of the scencs and to perform a precisc rectifi¢ation of the spacc
images, accordingly.
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MATEMATHYECKNA MOJAEJI 3A [IPU BbP3BAHE HA
KOCMMYECKH U30BPAXKEHUS C BUCOKA PAZIEJUTEAHA
CIIOCOBHOCT YPE3 GIIPENEJSTHE HA KOOPAUHATHTE HA

OIOPHH TOYKU C GPS H3MEPBAHUSA

Huxona leopzues, Ceemmun Gomes
Pestome

B cratmsta ce npemnara crpor meroxn sa NPUBBP3BAHE HA KOCMHYECKU
M30OpaKeHUs ¢ ToNIMa pasAcIMTenIHA CmocobHOCT or 1 - 3 M, upes
OTpPEACTSHE KOOPJMHATUTE HA OTOPHUTE TOUKY (OT) or ¢usmueckara
36MHZ IIOBBPXHOCT € ITOMOHITZ na GPS M3MEPBAHNSA. 38 MPOEKLUOHHA
'IOBBPXHUHEA Ce nphema pediepeHTeH (3eMeH) ENUINCOMT ¥ ChOTEETHO ce
OTYHTAT eNUICOHJAHHUTE BHCOYMHM Ha UICHTHQUIHPAHKETE OT Tepena.
Onpenensirero Ha maiaGure MEXHY HMOCHTHOWIMUPAHUTE TOYKH AaBa
BESMOXHOCT 32 NpelusHa pexTudUKalHs Ha KOCMUYECKOTO uzeOpaXcenus,

46





