MATHEMATICAL MODEL FOR COORDINATE ATTACHMENT AND RECTIFICATION OF SPACE IMAGES WITH HIGH RESOLUTION

Nikola Georgiev, Svetlin Fotev Space Research Institute - Bulgarian Academy of Sciences

Abstract

In the paper, a strict method for georcference of high-resolution ($1-3 \mathrm{~m}$) space images is suggested, through determination of the coordinates of GCPs of the carth cover using GPS measurements. As a projcction plane a refercnce (earth) ellipsoid is assumed and the ellipsoid heights of the identifies GCPs of the cover are accounted for. Determining the scaic between the identified points provides for precise rectification of the space images.

1. Introduction

In the last dccade, high-resolution space images became quite topical in the communities dealing with large scale mapping and remote sensing of the Earih. Research in this specific area gained a tremendous impetus after the first satellite images of the Earth with resolution from 1.0 to 3.0 m were received. The process of rapid improvement of space cameras and scamer systems [1,5], as well as of their carriers - Space Fiying Apparata (SFA) was triggercd. Nowadays, cameras of the type KVR-I000 with focal distance $f=10 \mathrm{~m}$, flying at height $h=220 \mathrm{~km}$ (Fig.1) are used. They provide resolution of 2.0 m . Camera $K F A-3000(\mathrm{f}=3.0 \mathrm{~m} ; \mathrm{H}=270 \mathrm{~km}$) provides resolution of 2-3 m . The results provided by the scanner systems QuickBird, EROS-B, IKONOSI, orbiting at heights of 600 km to 680 km and featuring an image resolution of 1 m . are similar. When the scamer systems are launched to higher orbits, lenses are used to insure long focal distances $\mathrm{f}=10 \mathrm{~m}$ as is the case with IKONOS.

The current state-of-the-art with satclite images provides real
opportunities for large scale mapping, upgrading of available maps, monitoring of the Earth scene and other practical and research tasks necessitating great precision in determining the mutual position of individual discrete points or contours in some particular region.

To accomplish these tasks it is necessary to refer the image coordinates to some identified ground control points (GCP) of the scene [2,3,4,5].

The various companics and corporations make efforts to supply the users with adequate soltware to solve this problem. It is of great importance to know the geometrical characteristics of the various types of satcllite images (scenes). Users have to take them into consideration when choosing the program packages for processing of these images.

Prof. Gordon Petrie from the Glasgow University pays special attention to this problem [1]. He makes the conclusion that most of the users are aware that the greater part of the program packages for satelite image processing are unable to handle geometricat configurations.

This was confirmed by the distributor of the American-Isracli group IAI/Core of the EROS satellite on a conference organized by the Ministry of Defence of the Rcpublic of Bulgaria in October, 2001. He statcd that, with immediate determining of the GCP coordinates of the scene by GPS measurements, precision increases 3 to 4 times. Actually, this corresponds to the resolution of the satellite image.

As for remote sensing software, a lot of packages can only provide a very simple geometrical model of the images. Often, satellite images are treated in a 2D-coordinate system (the case with aerial photography), making no lieu with their real geometry, possible relief shift or image slope. In the last case, rectification is made using the method of the "rubber shcet". It is based on calculation of polynomials, aiming to make the image generally coincide with the refercat coordinate system of the map, not removing the scene's geometrical deformations.

To fulfill its modern functions: small scale topographic mapping, revision of maps, monitoring of the environment, kecping a precise track of land scene changes etc., satellite images with high resolution have to undergo some preliminary processing $[2,3,5,6]$:

- high-procision coordinate reference of GCPs by GPS measurements;
- image rectification, accounting for changes in scale coefficients and retief pattern;
- using the Earth (refcrent) ellipsoid as a projection plane;
- taking into consideration ellipsoid heights;
- using strict methods for processing and evaluation of the results. Under these condition we will have results precise enough to correspond to the aims of objectives of these modern satellite images.

2. New mathematical model for coordinate connection of the ground control points from the satelite image
The information which is received and used at satellite images is versatile with respect to both the determined elements and their location in time and space. For this reason, the coordinates of the determined values refer to different orthogonal coordinate systems, as follows:

- The coordinates of GCP $X_{j}, Y_{j}, Z_{j},(j=1,2, \ldots, n)$ from the real earth scone refer to the Greenwich equatorial geocentric coordinate system X, Y, Z, having its origin O in the Earth's mass center, axis Z pointing to the central pole, and axis X pointing to the cross point of the Equator and the Greenwich meridian (Fig. 1).

Fig. 1

Fig. 2

- The coordinates of the satellite - $X_{k}{ }_{k}, Y_{k}, Z_{k}{ }^{\prime},(k=1,2, \ldots, m)$ arc determined in the inertial equatorial geocentric coordinate system $X^{\prime}, Y^{\prime}, Z^{\prime}$ (Fig. 1).
- The coordinates of the images $\bar{j} \quad(x, y, z)_{k j}$ of the GCPs are in the centric- satellite inertial coordinate system x, y, z (Fig. 2).

Quite often, in mathematical processing and evaluation of the precision of coordinate reference and rectification of the scenes, formulae are used where only the x_{j} and y_{j} coordinates of the GCPs images are determined, thereby actually handling the image in a 2 D coordinate system. As stated and substantiatod above, these equations, deprived of scale coefficients, do not provide a clear and accurate idea of the geometrical configuration of the image.

According to Fig. I, we can draw the following coordinate relation betwcen the centric-satellite vcctor-radius $\vec{\rho}_{k j}$, geocentric vector-radius \vec{r}_{k} and topocentric vector-radius $\vec{R}_{k j}$, referred to the inertial geocentric systems, namely:

$$
\vec{\rho}_{k j}=\left(\vec{R}_{j}-\vec{r}_{k}\right)=\left|\begin{array}{l}
X_{j}^{\prime}-X^{\prime}{ }_{k} \tag{1}\\
Y_{j}^{\prime}-Y^{\prime}{ }_{k} \\
Z_{j}^{\prime}-Z^{\prime}{ }_{k}
\end{array}\right|=\rho_{k j}\left|\begin{array}{l}
\cos \alpha_{k} \cos \delta_{k} \\
\sin \alpha_{k} \cos \delta_{k} \\
\sin \delta_{k}
\end{array}\right|=\rho_{k j}\left|\begin{array}{l}
\xi_{k j} \\
\eta_{k j} \\
\zeta_{k j}
\end{array}\right|,
$$

where:

$$
\begin{aligned}
& \xi_{k j}^{2}+\eta^{2}{ }_{k j}+\zeta^{2}{ }_{k j}=1 \\
& \alpha_{k j} \text { and } \delta_{k j} \text { are the satellite's rectascensia and declination, } \\
& \text { accordingly. } \\
& \vec{R}_{j}=\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)_{j}^{T} \text { - coordinates of } \mathrm{GCP}-j \text { in inertial }
\end{aligned}
$$

coordinate system

$$
\vec{r}_{k}=\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right)_{k}^{T} \text { - coordinates of satellite in inertial }
$$ coordinate system

Let us assume that vector $\vec{D}_{\vec{k} \bar{j}}$ of the image \bar{j} on the space image (Fig.2) of ground point j in a centric-satellite inertial coordinate system is as follows:

$$
\vec{D}_{k j}=\left|\begin{array}{l}
x_{k j}-x_{k o} \tag{2}\\
y_{k j}-y_{k o} \\
z_{k j}-z_{k j}
\end{array}\right|=D_{k \bar{k}}\left|\begin{array}{l}
\xi_{k j} \\
\eta_{k j} \\
\zeta_{k j}
\end{array}\right|,
$$

where:

$$
\begin{equation*}
D_{k \bar{j}}=\sqrt{\left(x_{k \bar{j}}-x_{k o}\right)^{2}+\left(y_{k \dot{\beta}}-y_{k o}\right)^{2}+\left(z_{k \bar{p}}-z_{k q}\right)^{2}} \tag{3}
\end{equation*}
$$

$(x, y, z)_{k i}$ - coordinates of the image of GCP - j on the sateflite image;
$(x, y, z)_{k o}$ - coordinates of the main point of the scenc O, obtained from the perpendicular drawn from the hind point of the lens's focal plane.
In reality, the main point docs not coincide with the origin of the coordinate system O on the satellite image (Fig. 2). From (2), we receive the unit vector $\vec{D}^{o}{ }_{k j}$, whereas equation (3) will be uses as a norm factor:

$$
\vec{D}_{k \bar{j}}^{o}=\frac{1}{D_{k j}}\left|\begin{array}{c}
x_{k \bar{j}}-x_{k o} \tag{4}\\
y_{k j}-y_{k o} \\
z_{k j}-z_{k o}
\end{array}\right|=\left|\begin{array}{l}
\xi_{k j} \\
\eta_{k j} \\
\zeta_{k j}
\end{array}\right|
$$

Formulae (1)-(4) provide the opportunity to define the point from the satellite image in a centric-satelite inertial coordinate system. But the coordinate reference of the images suggests that this be done in the Greenwich system defined above, in which the centric-satellite vector-radius is as follows:

$$
\vec{\rho}_{k j}=\rho_{k j}\left|\begin{array}{c}
\cos \left(\alpha_{k j}-S_{k}\right) \cos \delta_{k j} \tag{5}\\
\sin \left(\alpha_{k j}-S_{k}\right) \cos \delta_{k j} \\
\sin \delta_{k j}
\end{array}\right|=\rho_{k j}\left|\begin{array}{c}
\xi_{k j} \\
\eta_{k j} \\
\zeta_{k j}
\end{array}\right|=-\left|\begin{array}{c}
X_{k}-X_{j} \\
Y_{k}-Y_{j} \\
Z_{k}-Z_{j}
\end{array}\right|,
$$

where:

$$
\begin{equation*}
\rho_{k j}=\sqrt{\left(X_{j}-X_{k}\right)^{2}+\left(Y_{j}-Y_{k}\right)^{2}+\left(Z_{j}-Z_{k}\right)^{2}}, \tag{6}
\end{equation*}
$$

- S_{k} is the star time at Greenwich, corresponding to the moment t_{k} of roceiving of the satellite image. The coordinates of K/IA$(X, Y, Z)_{k}$ and of the GCP - $(X, Y, Z)_{j}$ are in the Greenwich coordinate system.
Using the operator \vec{P}_{0}, we can obtain the unit vector $\vec{D}_{k j}{ }^{\circ}$, which points to GCP- from the scene in the Greenwich geocentric system, namely:

$$
\vec{D}_{k j}^{o}=\vec{P}_{o}\left[\begin{array}{c}
\xi_{k j} \tag{7}\\
\eta_{k j} \\
\zeta_{k j}
\end{array}\right]=\frac{1}{D_{k j}} \vec{P}_{o}\left[\begin{array}{l}
x_{k j}-x_{k o} \\
y_{k j}-y_{k o} \\
z_{k j}-z_{k o}
\end{array}\right]
$$

From formulate (5) and (7) we obtain the following equation:

$$
\vec{\rho}_{k j}=\rho_{k j}\left[\begin{array}{l}
\xi_{k j} \tag{8}\\
\eta_{k j} \\
\zeta_{k j}
\end{array}\right]=\frac{1}{D_{k j}} \rho_{k j} \vec{P}_{c}\left[\begin{array}{l}
x_{k j}-x_{k o} \\
y_{k j}-y_{k s} \\
z_{k j}-z_{k g}
\end{array}\right]=\left[\begin{array}{c}
X_{j}-X_{k} \\
Y_{j}-Y_{k} \\
Z_{j}-Z_{k}
\end{array}\right]
$$

or we can draw the following relation:

$$
\left[\begin{array}{c}
x_{\bar{k} \bar{j}}-x_{k o} \tag{9}\\
y_{k \bar{j}}-y_{k o} \\
z_{k \bar{j}}-z_{k o}
\end{array}\right]=\frac{D_{k j}}{\rho_{k j}} \vec{P}_{o}^{r}\left[\begin{array}{c}
X_{j}-X_{k} \\
Y_{j}-Y_{k} \\
Z_{j}-Z_{k}
\end{array}\right]=m \vec{P}_{k}\left[\begin{array}{c}
X_{j}-X_{k} \\
Y_{j}-Y_{k} \\
Z_{j}-Z_{k}
\end{array}\right],
$$

where:

$$
\begin{align*}
& m_{k j}=\frac{D_{k j}}{\rho_{k j}} \text { - scale cocfficient } \tag{10}\\
& \vec{P}_{k}=\vec{P}_{o}^{T}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]
\end{align*}
$$

The operator $\vec{P}_{k}=\vec{P}_{n}{ }^{T}$ is ant orthogonal matrix accomplishing the transition from the Greenwich coordinate system to the satellite-centric coordinate system.
a_{i}, b_{i} and $c_{i}, i=1,2,3$ are clements of the matrix \vec{P}_{k}, which are function of the Euler angles (Fig.1): Ω - length of the ascending knot; w argument of the pericenter; i - orbit slope have the following form:

$$
\begin{cases}a_{1}=\cos w \cos \Omega-\sin w \sin \Omega \cos i, & b_{1}=-\sin w \cos \Omega-\cos w \sin \Omega \cos i, \tag{12}\\ a_{2}=\cos w \sin \Omega+\sin w \cos \Omega \cos i, & b_{2}=\sin w \sin \Omega+\cos w \cos \Omega \cos i, \\ a_{3}=\sin w \sin i, & b_{3}=\cos w \sin i, \\ c_{1}=\sin \Omega \sin i, & c_{2}=\cos \Omega \sin i, \quad c_{3}=\cos i\end{cases}
$$

From formalae (9), substituting (10) and (11), we can obtain:

$$
\left[\begin{array}{c}
x_{k j}-x_{k o} \tag{13}\\
y_{k j}-y_{k o} \\
z_{k j}-z_{k o}
\end{array}\right]=m_{k j}\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{c}
X_{j}-X_{k} \\
Y_{j}-Y_{k} \\
Z_{j}-Z_{k}
\end{array}\right]
$$

From equations (13) we obtain a system of lincar equations to determine the coordinates of the GCPs of the image.

From equation (13) we obtain the linear equations:

$$
\left\{\begin{array}{l}
x_{k j}-x_{k o}=m_{k j}\left[a_{1}\left(X_{j}-X_{k}\right)+a_{2}\left(Y_{j}-Y_{k}\right)+a_{3}\left(Z_{j}-Z_{k}\right)\right] \tag{14}\\
y_{k j}-y_{k o}=m_{k j}\left[b_{1}\left(X_{j}-X_{k}\right)+b_{2}\left(Y_{j}-Y_{k}\right)+b_{3}\left(Z_{j}-Z_{k}\right)\right] \\
z_{k j}-z_{k o}=m_{k j}\left[c_{1}\left(X_{j}-X_{k}\right)+c_{2}\left(Y_{j}-Y_{k}\right)+c_{3}\left(Z_{j}-Z_{k}\right)\right]
\end{array}\right.
$$

Equation (14) can be also prosented in the form:

$$
\left\{\begin{array}{l}
x_{k j}=m_{k j}\left[a_{1} \Delta X_{k j}+a_{2} \Delta Y_{k j}+a_{3} \Delta Z_{k j}\right]+x_{k o}=m_{k j} \bar{N}_{k j}+x_{k o} \tag{15}\\
y_{k j}=m_{k j}\left[b_{1} \Delta X_{k j}+b_{2} \Delta Y_{k j}+b_{3} \Delta Z_{k j}\right]+y_{k o}=m_{k j} \bar{P}_{k j}+y_{k o} \\
z_{k j}=m_{k j}\left[c_{1} \Delta X_{k j}+c_{2} \Delta Y_{k j}+c_{3} \Delta Z_{k j}\right]+z_{k o}=m_{k j} \bar{Q}_{k j}+z_{k o}
\end{array}\right.
$$

where, according to (14), we have:

$$
\begin{equation*}
\Delta X_{v_{j}}=X_{j}-X_{k}, \quad \Delta Y_{k j}=Y_{j}-Y_{k} \quad \text { пI } \quad \Delta Z_{k j}=Z_{j}-Z_{k} \tag{16}
\end{equation*}
$$

$x_{k j}, \quad y_{k j}, \quad z_{k j}$ - the definable coordinates of the images of the GCPs on the satellite image;
$x_{k o}, y_{k o}, z_{k o}$ - the coordinates of the matn point of the satellitc image;
X_{j}, Y_{j}, Z_{j} - gcocentric Greenwich coordinates of a GCP from the carth cover;
X_{k}, Y_{k}, Z_{k} - geocentric Greenwich coordinates of the "hind" Iens point;
$a_{i}, b_{i}, c_{i}, i=1,2,3$ - elements of the orthogonal matrix
\vec{P}_{k} - function of the Euter angles Ω, w, i.

3. Determination of the correction equations

For cvery point \bar{j} from the satcllite image, which turns to be image of GCP- j from the earth scene, we have twolve unknown quantities according to equations (14), accordingly (15).

$$
\begin{equation*}
X_{j}, Y_{j}, Z_{j}, X_{k}, Y_{k}, Z_{k}, \Omega_{k}, w_{k}, i_{k}, x_{k o}, y_{k o}, z_{k o} \tag{17}
\end{equation*}
$$

whercas their approximatciy values will be denoted by:

$$
\begin{equation*}
X_{j}^{0}, Y_{j}^{o}, Z_{j}^{o}, X_{k}{ }^{0}, Y_{k}{ }^{0}, Z_{k}^{0}, \Omega_{k}{ }^{0}, w_{k}{ }^{0}, i_{k}{ }^{\circ}, x_{k o}{ }^{\circ}, y_{k o}{ }^{\circ}, z_{k o}{ }^{\circ} \tag{18}
\end{equation*}
$$

Lincarizing equations (14), accordingly (15), for each support point; from the scenc of the space image with coordinates $\bar{j}=\left(\begin{array}{lll}x & y & z\end{array}\right)_{k j}$, yiclds correction cquation:

$$
\vec{V}_{U_{y}}=\left(\begin{array}{llll}
\vec{A}_{k} & \vec{B}_{k} & \vec{C}_{j} & \vec{D}_{k o}
\end{array}\left(\begin{array}{l}
d_{k} \vec{S}_{k} \tag{19}\\
d \vec{r}_{k} \\
d \vec{R}_{j} \\
d \vec{n}_{k o}
\end{array}\right)+\vec{L}_{k j} ; \quad P_{k j}\right.
$$

$P_{k j}$ - weight cocfficient
The values $\vec{A}_{k}, \vec{B}_{k}, \vec{C}_{j}, \vec{D}_{k c}$ in correction equation (19) should be considered as partial derivatives of the coordinates $x_{k j}, y_{k j}, z_{k j}$, namely

$$
\begin{align*}
\vec{A}_{k} & =\frac{\partial(x, y, z)_{k j}}{\partial(\Omega, w, i)_{k j}} \tag{20}\\
\vec{B}_{k} & =\frac{\partial(x, y, z)_{k j}}{\partial(X, Y, Z)_{k(j)}}, \tag{21}
\end{align*}
$$

whereas $\vec{B}_{k}=-\vec{C}_{j}$, the index " k^{*} is differentiation along the coordinatos of satellite, and the index " j " - differentiation along the coordinates of the GCPs of the scene.

$$
\begin{equation*}
\vec{D}_{k o}=\frac{\partial(x, y, z)_{k j}}{\partial(x, y, z)_{k o}} \tag{22}
\end{equation*}
$$

The correction vectors $d \vec{S}_{k}, d \vec{r}_{k}, d \vec{R}_{j}, d \vec{n}_{k o}$ of the unknown values (17) for the approximate values of (18) have the form:

$$
\left\{\begin{array}{l}
\vec{V}_{U_{k j}}=\left(\begin{array}{lll}
v_{x} & v_{y} & v_{z}
\end{array}\right)_{k j}^{T} \tag{23}\\
d \vec{S}_{k}=\left(\begin{array}{lll}
d \Omega & d W & d)_{k}^{T} \\
d \vec{r}_{j}=\left(\begin{array}{lll}
d X & d Y & d Z
\end{array}\right)_{k}^{T} \\
d \vec{R}_{j}=\left(\begin{array}{lll}
d X & d Y & d Z
\end{array}\right)_{j}^{T} \\
d \vec{n}_{k o}=\left(\begin{array}{lll}
d x & d y & d z
\end{array}\right)_{k p}^{T}
\end{array} . \begin{array}{l}
T
\end{array}{ }^{T}\right.
\end{array}\right.
$$

For the vector of the free term $\vec{L}_{k j}$ we have;

$$
\vec{L}_{k j}=\vec{U}_{k j}-\vec{U}_{k j}^{\prime}=\left|\begin{array}{l}
x_{k j}-x_{k j}^{\prime} \tag{24}\\
y_{k j}-y_{k j}^{\prime} \\
z_{k j}-z_{k j}^{\prime}
\end{array}\right|,
$$

where:
$\vec{U}_{k j}=\left(\begin{array}{lll}x & y & z\end{array}\right)_{k j}{ }^{T}$ - the defined values of the coordinates $x_{k j}, y_{k j}, z_{k j}$ along (14), accordingly (15);
$\vec{U}_{k j}^{\prime}=\left(\begin{array}{lll}x^{\prime} & y^{\prime} & z^{\prime}\end{array}\right)_{k j}^{T}$ - the measured coordinates of the space image
4. Obtaining equations to determine the values $\vec{A}_{k}, \vec{B}_{k}, \vec{C}_{j}$

To obtain the partial derivatives, constituting elements of the matix (20), (21) and (22), it is necessary to successively differentiate the coordinates $x_{k j}, y_{k \bar{k}}, z_{k \bar{j}}$ in relation to the Euler angles (Ω, w, i), the spacc coordinates of the ground points $G C P-j\left(\begin{array}{lll}X & Y & Z\end{array}\right)$, the Greenwich coordinates of K/IA-($\left.\begin{array}{lll}X & Y & Z\end{array}\right)_{k}$ and to coordinates $\left(\begin{array}{lll}x & y & z\end{array}\right)_{k o}$.

4.1. Partial derivatives of the value \vec{A}_{k}

According to equation (22), it is necessary to differentiate the image coordinates from (14), accordingly (12), in relation to (Ω, w, i). But since only vahues $a_{i}, b_{i}, c_{i},(i=1,2,3)$ are function of the Euler angles, it is necessary to differentiate $\bar{N}_{k j}, \bar{P}_{k j}, \bar{Q}_{k j}$, according to the equations:

$$
\left\{\begin{array}{l}
\frac{\partial x_{k j}}{\partial(\Omega, w, i)_{k}}=\frac{\partial\left(m_{k j} \bar{N}_{k j}\right)}{\partial(\Omega, w, i)_{k}}=m_{k j} \frac{\partial\left(\bar{N}_{k j}\right)}{\partial(\Omega, w, i)_{k}} \tag{26}\\
\frac{\partial y_{k j}}{\partial(\Omega, w, i)_{k}}=\frac{\partial\left(m_{k j} \bar{P}_{k j}\right)}{\partial(\Omega, w, i)_{k}}=m_{k j} \frac{\partial\left(\bar{P}_{k j}\right)}{\partial(\Omega, w, i)_{k}} \\
\frac{\partial z_{k j}}{\partial(\Omega, w, i)_{k}}=\frac{\partial\left(m_{k j} \bar{Q}_{k j}\right)}{\partial(\Omega, w, i)_{k}}=m_{k j} \frac{\partial\left(\bar{Q}_{k j}\right)}{\partial(\Omega, w, i)_{k}}
\end{array}\right.
$$

4.2. Partial derivatives of the values $\vec{B}_{k}=-\vec{C}_{j}$

As stated above, to obtain the derivatives of the reflectance coordinates from $(x, y, z)_{k j}$ in relation to $\left(\begin{array}{lll}X & Y & Z\end{array}\right)_{k}{ }^{T}$ and $\left(\begin{array}{lll}X & Y & Z\end{array}\right)_{j}{ }^{T}$, equations (14), accordingly (15), should be used, which means both the scale $m_{k j}=\frac{D_{k j}}{\rho_{k j}}$, following formula (10), and $\bar{N}_{k j}, \bar{P}_{k j}, \bar{Q}_{k j}$ are function of the Greenwich coordinates. Having in mind this fact, we will differentiate, using equations:
(27) $\left\{\begin{array}{l}\frac{\partial x_{k j}}{\partial(X, Y, Z)_{k(j)}}=\frac{\partial\left(m_{k j} \bar{N}_{k j}\right)}{\partial(X, Y, Z)_{k(j)}}=\frac{\partial\left(m_{k j}\right)}{\partial(X, Y, Z)_{k(j)}} \bar{N}_{k j}+m_{k j} \frac{\partial\left(\bar{N}_{k j}\right)}{\partial(X, Y, Z)_{k(j)}} \\ \frac{\partial y_{k j}}{\partial(X, Y, Z)_{k(j)}}=\frac{\partial\left(m_{k j} \bar{P}_{k j}\right)}{\partial(X, Y, Z)_{k(j)}}=\frac{\partial\left(m_{k j}\right)}{\partial(X, Y, Z)_{k(j)}} \bar{P}_{P_{k j}}+m_{k j} \frac{\partial\left(\bar{P}_{k j}\right)}{\partial(X, Y, Z)_{k(j)}} \\ \frac{\partial z_{k \bar{j}}}{\partial(X, Y, Z)_{k(j)}}=\frac{\partial\left(m_{k j} \bar{Q}_{k j}\right)}{\partial(X, Y, Z)_{k(j)}}=\frac{\partial\left(m_{k j}\right)}{\partial(X, Y, Z)_{k(j)}} \bar{Q}_{k j}+m_{k j} \frac{\partial\left(\bar{Q}_{k j}\right)}{\partial(X, Y, Z)_{k(j)}}\end{array}\right.$

The essential thing here is that the scale coefficient $m_{k j}$ is calculated for each available $G C P$ from the cover, with the obtained deformations of the image between each determined reflectance point and the origin of the coordinate system.

4.3. Equation to determine the derivatives $(x, y, z)_{\bar{y}}$ in relation to $(x, y, z)_{k o}$

Following equation (22) and the system of linear equations (14), accordingly (15), and having in mind that, according to equation (10), in determining $m_{k j}$, the distance $D_{k j}$ of the image is used, formula (3), which is a function of the coordinates of the main point $x_{k o}, y_{k o}, z_{k o}$ on picture O . Based on this, we have the following meanings for the matrix $D_{k o}$:

$$
\widehat{D}_{k o}=\left|\begin{array}{ccc}
\frac{\left(x_{k j}-x_{k o}\right)^{2}}{D^{2}{ }_{k o}} & 0 & 0 \tag{28}\\
0 & \frac{\left(y_{k j}-y_{k o}\right)^{2}}{D^{2}{ }_{k o}} & 0 \\
0 & 0 & \frac{\left(z_{k j}-z_{k o}\right)^{2}}{D^{2}{ }_{k o}}
\end{array}\right|
$$

The essential thing here is that the scale coefficient $m_{k j}$ is calculated for cach available GCP from the cover, with the obtained deformations of the image betwcen each determined reflectance point and the origin of the coordinate system.

Correction equation (19) has the form:

$$
\begin{equation*}
\vec{V}_{v_{k j}}=\vec{A}_{k} d \vec{S}_{k}+\vec{B}_{k} d \vec{r}_{k}+\vec{C}_{j} d \vec{R}_{j}+\vec{D}_{k o} d \vec{n}_{k o}+\vec{L}_{k j} ; \quad P_{k j} \tag{29}
\end{equation*}
$$

6.Conclusion

As a conclusion we will note that the developed mathematical model provides the opportunity for georectification of the images of GCPs from the cover in a 3D satellite-centric coordinate system ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) $\mathrm{kj}_{\mathrm{kj}}$ having its origin O in the lens's hind point, thereby obtaining a 3D model of the image. Ustually, in the program packages used in remote sensing of the Earth, the images of the GCPs are rectified in a ground coordinate system $(x, y)_{k j}$. The essential point here is that we obtain the real geometry of the image and it is possible to determine the shift of the projected GCP as a result of the cover pattern and slope.

In the obtained equations, the scale coefficient $m=\frac{D_{k j}}{\rho_{k j}}$ is also included, which provides the opportanity to determine the geometric deformation of the scencs and to perform a precise rectification of the space images, accordingly.

$$
\begin{aligned}
& \text { References }
\end{aligned}
$$

в Fъпгария", София, 15, 1998.
пвелсдеания в Бълария", ИКЙ - БАН, 2000, 124-131.
от терена при координатното цривдряване на космвчески фотографски изоиражения
$150-161$.

> G.N.Geutgiev, RAedkov. D.Nedelcheya. Wsing an Orbital Muthod atod GPS Measurchentr of the Ground Control Pont in Georeterctuce of Space Images, Aerospuce Reseach in Bulgatia, 16, pp. 70-80, Sofia.
Jon ma $\mathrm{BMAC}, \mathrm{C}, 1987-88$, т. XXXiII.

Никола Геореиев, Сбетлин Фотев

Резюме

В статията се предлага строг метод за привързване на космически изображения с голяма разделителна способност от 1 - 3 м, чрез определяне координатите на опорните точки (ОТ) от физическата Земна повьрхност с помощта на GPS измервания. За проекционна ловърхнина се приема референтен (земен) елипсоид и съответно се отчитат елипсоидните височини на идентифицираните от терена Определянето на мацабите между идентифицираните точки дава въЗможност за прецизна ректификация на космическото изображения.

